Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
J Neurol Sci ; 459: 122955, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593523

RESUMO

Chikungunya fever is an arboviral illness caused by chikungunya virus (CHIKV) and transmitted by the bite of Aedes aegypti and Aedes albopictus. It is an RNA virus belonging to the genus Alphavirus and family Togaviridae. We present a case series of three patients with chikungunya illness developing para/post-infectious myeloradiculoneuropathy.These patients developed neurological symptoms in the form of bilateral lower limb weakness with sensory and bowel involvement after the recovery from the initial acute episode of chikungunya fever. Clinical examination findings suggested myeloradiculoneuropathy with normal Magnetic Resonance Imaging of the Spine, with the nerve conduction study showing sensorimotor axonal polyneuropathy. All the patients were treated with 1 g of methylprednisolone once a day for five days, and case 2 was given intravenous immunoglobulin also. In the follow-up, cases 1 and 2 showed complete recovery without recurrence, and case 3 did not show improvement at one month.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Febre de Chikungunya/complicações , Febre de Chikungunya/diagnóstico por imagem , Febre de Chikungunya/tratamento farmacológico , Insetos Vetores , Vírus Chikungunya/genética
2.
Viruses ; 16(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543735

RESUMO

Uncaria tomentosa (UT) is a medicinal plant popularly known as cat's claw belonging to the Rubiaceae family that has been reported to display antiviral and anti-inflammatory activities. The chikungunya virus (CHIKV) outbreaks constitute a Brazilian public health concern. CHIKV infection develops an abrupt onset of fever, usually accompanied by a skin rash, besides incapacitating polyarthralgia. There is no vaccine available or treatment for CHIKV infection. The present study evaluates the hydroalcoholic extract of UT bark as a potential antiviral against CHIKV. The in vitro antiviral activity of the UT extract against the Brazilian CHIKV strain was assessed using quantitative reverse transcription polymerase chain reaction, flow cytometry, and plaque assay. Results obtained demonstrated that UT inhibits CHIKV infection in a dose-dependent manner. At the non-cytotoxic concentration of 100 µg/mL, UT exhibited antiviral activity above 90% as determined by plaque reduction assay, and it reduced the viral cytopathic effect. Similarly, a significant virucidal effect of 100 µg/mL UT was observed after 24 and 48 h post-infection. This is the first report on the antiviral activity of UT against CHIKV infection, and the data presented here suggests UT as a potential antiviral to treat CHIKV infection.


Assuntos
Unha-de-Gato , Febre de Chikungunya , Vírus Chikungunya , Plantas Medicinais , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico
3.
Int J Biol Macromol ; 262(Pt 2): 129949, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311132

RESUMO

Chikungunya virus (CHIKV) is a single positive-stranded RNA virus of the Togaviridae family and Alphavirus genus, with a typical lipid bilayer envelope structure, and is the causative agent of human chikungunya fever (CHIKF). The U.S. Food and Drug Administration has recently approved the first chikungunya vaccine, Ixchiq; however, vaccination rates are low, and CHIKF is prevalent owing to its periodic outbreaks. Thus, developing effective anti-CHIKV drugs in clinical settings is imperative. Viral proteins encoded by the CHIKV genome play vital roles in all stages of infection, and developing therapeutic agents that target these CHIKV proteins is an effective strategy to improve CHIKF treatment efficacy and reduce mortality rates. Therefore, in the present review article, we aimed to investigate the basic structure, function, and replication cycle of CHIKV and comprehensively outline the current status and future advancements in anti-CHIKV drug development, specifically targeting nonstructural (ns) proteins, including nsP1, nsP2, nsP3, and nsP4 and structural proteins such as capsid (C), E3, E2, 6K, and E1.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Preparações Farmacêuticas , Replicação Viral/genética , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Proteínas não Estruturais Virais/metabolismo
4.
Virol J ; 21(1): 5, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178163

RESUMO

Chikungunya virus (CHIKV) infection causes chikungunya, a viral disease that currently has no specific antiviral treatment. Several repurposed drug candidates have been investigated for the treatment of the disease. In order to improve the efficacy of the known drugs, combining drugs for treatment is a promising approach. The current study was undertaken to explore the antiviral activity of a combination of repurposed drugs that were reported to have anti-CHIKV activity. We explored the effect of different combinations of six effective drugs (2-fluoroadenine, emetine, lomibuvir, enalaprilat, metyrapone and resveratrol) at their non-toxic concentrations against CHIKV under post infection treatment conditions in Vero cells. Focus-forming unit assay, real time RT-PCR, immunofluorescence assay, and western blot were used to determine the virus titre. The results revealed that the combination of 2-fluoroadenine with either metyrapone or emetine or enalaprilat exerted inhibitory activity against CHIKV under post-infection treatment conditions. The effect of these drug combinations was additive in nature compared to the effect of the individual drugs. The results suggest an additive anti-viral effect of these drug combinations against CHIKV. The findings could serve as an outline for the development of an innovative therapeutic approach in the future to treat CHIKV-infected patients.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Chlorocebus aethiops , Humanos , Células Vero , Emetina/farmacologia , Emetina/uso terapêutico , Enalaprilato/farmacologia , Enalaprilato/uso terapêutico , Metirapona/farmacologia , Metirapona/uso terapêutico , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Combinação de Medicamentos
6.
Eur J Med Chem ; 264: 116010, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104375

RESUMO

The worldwide re-emerge of the Chikungunya virus (CHIKV), the high morbidity associated with it, and the lack of an available vaccine or antiviral treatment make the development of a potent CHIKV-inhibitor highly desirable. Therefore, an extensive lead optimization was performed based on the previously reported CHVB compound 1b and the reported synthesis route was optimized - improving the overall yield in remarkably shorter synthesis and work-up time. Hundred analogues were designed, synthesized, and investigated for their antiviral activity, physiochemistry, and toxicological profile. An extensive structure-activity relationship study (SAR) was performed, which focused mainly on the combination of scaffold changes and revealed the key chemical features for potent anti-CHIKV inhibition. Further, a thorough ADMET investigation of the compounds was carried out: the compounds were screened for their aqueous solubility, lipophilicity, their toxicity in CaCo-2 cells, and possible hERG channel interactions. Additionally, 55 analogues were assessed for their metabolic stability in human liver microsomes (HLMs), leading to a structure-metabolism relationship study (SMR). The compounds showed an excellent safety profile, favourable physicochemical characteristics, and the required metabolic stability. A cross-resistance study confirmed the viral capping machinery (nsP1) to be the viral target of these compounds. This study identified 31b and 34 as potent, safe, and stable lead compounds for further development as selective CHIKV inhibitors. Finally, the collected insight led to a successful scaffold hop (64b) for future antiviral research studies.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Células CACO-2 , Antivirais/química , Pirimidinas/farmacologia , Febre de Chikungunya/tratamento farmacológico , Replicação Viral
7.
Viruses ; 15(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005909

RESUMO

Chikungunya fever, a debilitating disease caused by Chikungunya virus (CHIKV), is characterized by a high fever of sudden onset and an intense arthralgia that impairs individual regular activities. Although most symptoms are self-limited, long-term persistent arthralgia is observed in 30-40% of infected individuals. Currently, there is no vaccine or specific treatment against CHIKV infection, so there is an urgent need for the discovery of new therapeutic options for CHIKF chronic cases. This present study aims to test the antiviral, cytoprotective, and anti-inflammatory activities of an ethanol extract (FF72) from Ampelozizyphus amazonicus Ducke wood, chemically characterized using mass spectrometry, which indicated the major presence of dammarane-type triterpenoid saponins. The major saponin in the extract, with a deprotonated molecule ion m/z 897 [M-H]-, was tentatively assigned as a jujubogenin triglycoside, a dammarane-type triterpenoid saponin. Treatment with FF72 resulted in a significant reduction in both virus replication and the production of infective virions in BHK-21-infected cells. The viability of infected cells was assessed using an MTT, and the result indicated that FF72 treatment was able to revert the toxicity mediated by CHIKV infection. In addition, FF72 had a direct effect on CHIKV, since the infectivity was completely abolished in the presence of the extract. FF72 treatment also reduced the expression of the major pro-inflammatory mediators overexpressed during CHIKV infection, such as IL-1ß, IL-6, IL-8, and MCP-1. Overall, the present study elucidates the potential of FF72 to become a promising candidate of herbal medicine for alphaviruses infections.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Saponinas , Triterpenos , Humanos , Febre de Chikungunya/tratamento farmacológico , Madeira , Triterpenos/farmacologia , Replicação Viral , Saponinas/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Etanol/farmacologia , Artralgia/tratamento farmacológico
8.
Eur J Med Chem ; 261: 115849, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37804768

RESUMO

A series of Rhodamine type Anthrone-Spirolactam (ASL) derivatives Benzylimin-Anthrone-Spirolactam (ASL-1 to ASL-10) and Benzamide-Anthrone-Spirolactam (ASL-11 and ASL-12) were synthesized via a simple condensation reaction between Anthrone Spiro-lactamine (2) and various aromatic aldehyde and acyl chlorides respectively. Since rhodamine-based compounds were reported to have antiviral activity, the ASL derivatives were examined for in vitro antiviral activity against dengue and chikungunya viruses. Among all the analogues, ASL-3, ASL-6, ASL-7, ASL-8, ASL-9 and ASL-10 were the most potent against dengue virus (DENV) and exerted around one log reduction in virus titre under post-treatment conditions. At the same time ASL-3 was effective under co-treatment conditions. Two analogues ASL-6 and ASL-12 exerted anti-chikungunya virus (CHIKV) activity under post-treatment conditions. In silico docking studies revealed that the ASL derivatives interacted with the proteins of DENV and CHIKV. Together, the results suggest the anti-DENV and CHIKV activity of ASL derivatives which may be exploited further for therapeutic purposes.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Humanos , Febre de Chikungunya/tratamento farmacológico , Dengue/tratamento farmacológico , Antivirais/farmacologia
9.
Emerg Microbes Infect ; 12(2): 2270074, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37842770

RESUMO

Chikungunya virus is a re-emerging arbovirus that has caused epidemic outbreaks in recent decades. Patients in older age groups with high viral load and severe immunologic response during acute infection are likely to develop chronic arthritis and severe joint pain. Currently, no antiviral drug is available. Previous studies suggested that a flavone derivative, 8-bromobaicalein, was a potential dengue and Zika replication inhibitor in a cell-based system targeting flaviviral polymerase. Here we characterized that 8-bromobaicalein inhibited chikungunya virus replication with EC50 of 0.49 ± 0.11 µM in Vero cells. The molecular target predicted at viral nsP1 methyltransferase using molecular binding and fragment molecular orbital calculation. Additionally, oral administration of 250 mg/kg twice daily treatment alleviated chikungunya-induced musculoskeletal inflammation and reduced viral load in healthy adult mice. Pharmacokinetic analysis indicated that the 250 mg/kg administration maintained the compound level above EC99.9 for 12 h. Therefore, 8-bromobaicalein should be a potential candidate for further development as a pan-arboviral drug.


Assuntos
Arbovírus , Febre de Chikungunya , Vírus Chikungunya , Infecção por Zika virus , Zika virus , Chlorocebus aethiops , Humanos , Adulto , Animais , Camundongos , Idoso , Febre de Chikungunya/tratamento farmacológico , Células Vero , Carga Viral , Vírus Chikungunya/fisiologia , Inflamação
10.
Am J Trop Med Hyg ; 109(3): 542-547, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37549898

RESUMO

Chikungunya fever is a global vector-borne viral disease. Patients with acute chikungunya are usually treated symptomatically. The arthritic phase may be self-limiting. However, many patients develop extremely disabling arthritis that does not improve after months. The aim of this study was to describe the treatment of chikungunya arthritis (CHIKA) patients. A medical records review was conducted in 133 CHIKA patients seen at a rheumatology practice. Patients were diagnosed by clinical criteria and confirmed by the presence of anti-chikungunya IgM. Patients were treated with methotrexate (20 mg/week) and/or leflunomide (20 mg/day) and dexamethasone (0-4 mg/day) for 4 weeks. At baseline visit and 4 weeks after treatment, Disease Activity Score 28 (DAS28) and pain (using a visual analog scale) were ascertained. Five months after the end of treatment, patients were contacted to assess pain, tender joint count, and swollen joint count. The mean age of patients was 58.6 ± 13.7 years, and 119 (85%) were female. After 4 weeks of treatment, mean (SD) DAS28-erythrocyte sedimentation rate (6.0 [1.2] versus 2.7 [1.0], P < 0.001) and pain (81.8 [19.2] to 13.3 [22.9], P < 0.001) scores significantly decreased. A total of 123 patients were contacted 5 months after the end of treatment. Pain score, tender joint count, and swollen joint count significantly declined after 4 weeks of treatment, and the response was sustained for 5 months. In this group of patients with CHIKA, 4-week treatment induced a rapid clinical improvement that was maintained 5 months after the end of therapy; however, the contribution of treatment to these outcomes is uncertain.


Assuntos
Antirreumáticos , Artrite Reumatoide , Febre de Chikungunya , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Antirreumáticos/uso terapêutico , Brasil/epidemiologia , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/tratamento farmacológico , Resultado do Tratamento , Quimioterapia Combinada , Índice de Gravidade de Doença
11.
Chem Biodivers ; 20(8): e202300192, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37489706

RESUMO

Infection by viruses Chikungunya (CHIKV) and Zika (ZIKV) continue to be serious problems in tropical and subtropical areas of the world. Here, we evaluated the antiviral and virucidal activity of caffeine against CHIKV and ZIKV in Vero, A549, and Huh-7 cell lines. Results showed that caffeine displays antiviral properties against both viruses. By pre-and post-infection treatment, caffeine significantly inhibited CHIKV and ZIKV replication in a dose-dependent manner. Furthermore, caffeine showed a virucidal effect against ZIKV. Molecular docking suggests the possible binding of caffeine with envelope protein and RNA-dependent RNA polymerase of CHIKV and ZIKV. This is the first study that showed an antiviral effect of caffeine against CHIKV and ZIKV. Although further studies are needed to better understand the mechanism of caffeine-mediated repression of viral replication, caffeine appears to be a promising compound that could be used for in vivo studies, perhaps in synergy with other compounds present in daily beverages.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Infecção por Zika virus , Zika virus , Humanos , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/prevenção & controle , Cafeína/farmacologia , Vírus Chikungunya/genética , Simulação de Acoplamento Molecular , Antivirais/farmacologia
12.
Eur J Med Chem ; 258: 115572, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37364511

RESUMO

The Togaviridae family comprises several New- and Old-World Alphaviruses that have been responsible for thousands of human illnesses, including the RNA arbovirus Chikungunya virus (CHIKV). Firstly, it was reported in Tanzania in 1952 but rapidly it spread to several countries from Europe, Asia, and the Americas. Since then, CHIKV has been circulating in diverse countries around the world, leading to increased morbidity rates. Currently, there are no FDA-approved drugs or licensed vaccines to specifically treat CHIKV infections. Thus, there is a lack of alternatives to fight against this viral disease, making it an unmet need. Structurally, CHIKV is composed of five structural proteins (E3, E2, E1, C, and 6k) and four non-structural proteins (nsP1-4), in which nsP2 represents an attractive antiviral target for designing novel inhibitors since it has an essential role in the virus replication and transcription. Herein, we used a rational drug design strategy to select some acrylamide derivatives to be synthesized and evaluated against CHIKV nsP2 and also screened on CHIKV-infected cells. Thus, two regions of modifications were considered for these types of inhibitors, based on a previous study of our group, generating 1560 possible inhibitors. Then, the 24 most promising ones were synthesized and screened by using a FRET-based enzymatic assay protocol targeting CHIKV nsP2, identifying LQM330, 333, 336, and 338 as the most potent inhibitors, with Ki values of 48.6 ± 2.8, 92.3 ± 1.4, 2.3 ± 1.5, and 181.8 ± 2.5 µM, respectively. Still, their Km and Vmax kinetic parameters were also determined, along with their competitive binding modes of CHIKV nsP2 inhibition. Then, ITC analyses revealed KD values of 127, 159, 198, and 218 µM for LQM330, 333, 336, and 338, respectively. Also, their ΔH, ΔS, and ΔG physicochemical parameters were determined. MD simulations demonstrated that these inhibitors present a stable binding mode with nsP2, interacting with important residues of this protease, according to docking analyzes. Moreover, MM/PBSA calculations displayed that van der Waals interactions are mainly responsible for stabilizing the inhibitor-nsP2 complex, and their binding energies corroborated with their Ki values, having -198.7 ± 15.68, -124.8 ± 17.27, -247.4 ± 23.78, and -100.6 ± 19.21 kcal/mol for LQM330, 333, 336, and 338, respectively. Since Sindbis (SINV) nsP2 is similar to CHIKV nsP2, these best inhibitors were screened against SINV-infected cells, and it was verified that LQM330 presented the best result, with an EC50 value of 0.95 ± 0.09 µM. Even at 50 µM concentration, LQM338 was found to be cytotoxic on Vero cells after 48 h. Then, LQM330, 333, and 336 were evaluated against CHIKV-infected cells in antiviral assays, in which LQM330 was found to be the most promising antiviral candidate in this study, exhibiting an EC50 value of 5.2 ± 0.52 µM and SI of 31.78. The intracellular flow cytometry demonstrated that LQM330 is able to reduce the CHIKV cytopathogenic effect on cells, and also reduce the percentage of CHIKV-positive cells from 66.1% ± 7.05 to 35.8% ± 5.78 at 50 µM concentration. Finally, qPCR studies demonstrated that LQM330 was capable of reducing the number of viral RNA copies/µL, suggesting that CHIKV nsP2 is targeted by this inhibitor as its mechanism of action.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Acrilamidas/farmacologia , Antivirais/química , Febre de Chikungunya/tratamento farmacológico , Chlorocebus aethiops , Células Vero , Replicação Viral
13.
Front Cell Infect Microbiol ; 13: 1132538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180434

RESUMO

The chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes mosquitoes. There are no licenced antivirals or vaccines for treatment or prevention. Drug repurposing approach has emerged as a novel concept to find alternative uses of therapeutics to battle pathogens. In the present study, anti CHIKV activity of fourteen FDA-approved drugs was investigated by in vitro and in silico approaches. Focus-forming unit assay, immunofluorescence test, and quantitative RT-PCR assay were used to assess the in vitro inhibitory effect of these drugs against CHIKV in Vero CCL-81 cells. The findings showed that nine compounds, viz., temsirolimus, 2-fluoroadenine, doxorubicin, felbinac, emetine, lomibuvir, enalaprilat, metyrapone and resveratrol exhibit anti chikungunya activity. Furthermore, in silico molecular docking studies performed by targeting CHIKV structural and non-structural proteins revealed that these drugs can bind to structural protein targets such as envelope protein, and capsid, and non-structural proteins NSP2, NSP3 and NSP4 (RdRp). Findings from in vitro and in silico studies reveal that these drugs can suppress the infection and replication of CHIKV and further in vivo studies followed by clinical trials are warranted.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Replicação Viral , Febre de Chikungunya/tratamento farmacológico , Antivirais/farmacologia , Antivirais/metabolismo
14.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014125

RESUMO

Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is an emerging global threat identified in more than 60 countries across continents. The risk of CHIKV transmission is rising due to increased global interactions, year-round presence of mosquito vectors, and the ability of CHIKV to produce high host viral loads and undergo mutation. Although CHIKV disease is rarely fatal, it can progress to a chronic stage, during which patients experience severe debilitating arthritis that can last from several weeks to months or years. At present, there are no licensed vaccines or antiviral drugs for CHIKV disease, and treatment is primarily symptomatic. This Review provides an overview of CHIKV pathogenesis and explores the available therapeutic options and the most recent advances in novel therapeutic strategies against CHIKV infections.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Mosquitos Vetores , Febre de Chikungunya/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Mutação
16.
J Med Virol ; 95(3): e28661, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905112

RESUMO

Chikungunya virus (CHIKV) infection, a global public health problem, might lead to acute/chronic polyarthritis causing long-term morbidity among infected patients. But, except nonsteroidal anti-inflammatory drugs (NSAIDs) with gastrointestinal, cardiovascular, and immune-related side-effects, no Food and Drug Administration (FDA)-approved analgesic drug is available till date for the treatment of CHIKV-induced arthritis. Curcumin, a plant product with minimal toxicity has been FDA-approved as a Generally Recognized As Safe drug. This study aimed to determine the analgesic and prophylactic effect of curcumin, if any, among CHIKV-induced arthralgic mice. Arthritic pain was evaluated by von Frey assay, locomotory behavior by open-field test, and feet swelling by calipers. Cartilage integrity and proteoglycan loss were evaluated by Safranin O staining followed by Osteoarthritis Research Society International (OARSI), Standardized Microscopic Arthritis Scoring of Histological sections (SMASH) score, and type II collagen loss by immunohistochemistry. Mice were administered high (HD), mid (MD), and low (LD) curcumin doses, before (PT: pretreatment), during (CT: cotreatment) and after (Post-T: posttreatment) CHIKV-infection. Curcumin treatment using PTHD (2000 mg/kg), CTHD , and Post-TMD (1000 mg/kg) significantly alleviated CHIKV-induced arthritic pain by improving pain-threshold, locomotory behavior and reducing feet swelling of infected mice. Also, decreased proteoglycan loss and cartilage erosion with lower OARSI, SMASH scores were observed among these three subgroups compared to infected ones. Compared to infected ones, one- to twofold increased intensity of type II collagen in knee medial femoral condyle and medial tibial plateau regions of these subgroups was observed by immunohistochemical staining. Thus, this study highlighted both the analgesic (CT, Post-T), and prophylactic (PT) activity of curcumin in alleviating CHIKV-induced acute/chronic arthritis within mouse model.


Assuntos
Artrite , Febre de Chikungunya , Vírus Chikungunya , Curcumina , Animais , Camundongos , Febre de Chikungunya/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Colágeno Tipo II/uso terapêutico , Artrite/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças , Proteoglicanas/uso terapêutico , Dor/tratamento farmacológico
17.
J Ethnopharmacol ; 309: 116366, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36914036

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sauropus androgynus is a medicinal shrub used for the treatment of fever in ethnomedical traditions in various Southeast Asian countries. AIM OF THE STUDY: This study was aimed to identify antiviral principles from S. androgynus against Chikungunya virus (CHIKV), a major mosquito-borne pathogen that re-emerged in the last decade, and to unravel their mechanism of action. MATERIALS AND METHODS: Hydroalcoholic extract of S. androgynus leaves was screened for anti-CHIKV activity using cytopathic effect (CPE) reduction assay. The extract was subjected to activity guided isolation and the resultant pure molecule was characterized by GC-MS, Co-GC and Co-HPTLC. The isolated molecule was further evaluated for its effect by plaque reduction assay, Western blot and immunofluorescence assays. In silico docking with CHIKV envelope proteins and molecular dynamics simulation (MD) analyses were used to elucidate its possible mechanism of action. RESULTS: S. androgynus hydroalcoholic extract showed promising anti-CHIKV activity and its active component, obtained by activity guided isolation, was identified as ethyl palmitate (EP), a fatty acid ester. At 1 µg/mL, EP led to 100% inhibition of CPE and a significant 3 log10 reduction in CHIKV replication in Vero cells at 48 h post-infection. EP was highly potent with an EC50 of 0.0019 µg/mL (0.0068 µM) and a very high selectivity index. EP treatment significantly reduced viral protein expression, and time of addition studies revealed that it acts at the stage of viral entry. A strong binding to the viral envelope protein E1 homotrimer during entry, thus preventing viral fusion, was identified as a possible mechanism by which EP imparts its antiviral effect. CONCLUSIONS: S. androgynus contains EP as a potent antiviral principle against CHIKV. This justifies the use of the plant against febrile infections, possibly caused by viruses, in various ethnomedical systems. Our results also prompt more studies on fatty acids and their derivatives against viral diseases.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Plantas Medicinais , Animais , Chlorocebus aethiops , Vírus Chikungunya/fisiologia , Células Vero , Linhagem Celular , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/metabolismo , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Medicina Tradicional
18.
Bioorg Med Chem ; 83: 117239, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940609

RESUMO

Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever, a (re)emerging arbovirus infection, that causes severe and often persistent arthritis, as well as representing a serious health concern worldwide for which no antivirals are currently available. Despite efforts over the last decade to identify and optimize new inhibitors or to reposition existing drugs, no compound has progressed to clinical trials for CHIKV and current prophylaxis is based on vector control, which has shown limited success in containing the virus. Our efforts to rectify this situation were initiated by screening 36 compounds using a replicon system and ultimately identified the natural product derivative 3-methyltoxoflavin with activity against CHIKV using a cell-based assay (EC50 200 nM, SI = 17 in Huh-7 cells). We have additionally screened 3-methyltoxoflavin against a panel of 17 viruses and showed that it only additionally demonstrated inhibition of the yellow fever virus (EC50 370 nM, SI = 3.2 in Huh-7 cells). We have also showed that 3-methyltoxoflavin has excellent in vitro human and mouse microsomal metabolic stability, good solubility and high Caco-2 permeability and it is not likely to be a P-glycoprotein substrate. In summary, we demonstrate that 3-methyltoxoflavin has activity against CHIKV, good in vitro absorption, distribution, metabolism and excretion (ADME) properties as well as good calculated physicochemical properties and may represent a valuable starting point for future optimization to develop inhibitors for this and other related viruses.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Camundongos , Antivirais/química , Células CACO-2 , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/fisiologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Flavinas/química , Flavinas/farmacologia
19.
Bioorg Med Chem Lett ; 83: 129188, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36804408

RESUMO

Chikungunya fever is an acute infectious disease caused by Chikungunya virus (CHIKV) and transmitted by Aedes mosquito. It is characterized by fever, rash and arthralgia with no effective drugs. Lomerizine (Lom) is a new generation calcium antagonist, which is mainly used in the treatment of migraine. Certain antiviral function of Lom was shown by some research. In our study, a series of new derivatives of Lom were designed and synthesized, and their in-vitro anti-CHIKV activity was tested. The results showed that Lom and its derivatives had potent anti-CHIKV activity and low cytotoxicity. Among them, compounds B1 and B7 showed most potent antiviral activity. Besides, structure-activity relationships, in-silico ADMET properties were also analyzed. Molecular docking study was performed to rationalize the SAR and analyze the possible binding modes between B1 and amino acid residues in the active site of nsP3 protein to enhance the understanding of their action as antiviral agents. These finding provides research basis for the design and synthesis of effective anti-CHIKV drugs with Lom as the lead compound.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Simulação de Acoplamento Molecular , Febre de Chikungunya/tratamento farmacológico , Antivirais/metabolismo , Replicação Viral
20.
Cells ; 12(4)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36831223

RESUMO

Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.


Assuntos
Anticorpos Monoclonais , Febre de Chikungunya , Vírus Chikungunya , Hiperalgesia , Proteínas do Envelope Viral , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais , Antineoplásicos , Hiperalgesia/tratamento farmacológico , Canais de Cátion TRPV , Proteínas do Envelope Viral/metabolismo , Febre de Chikungunya/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...